On Relaxations Applicable to Model Predictive Control for Systems with Binary Control Signals

نویسندگان

  • Daniel Axehill
  • Lieven Vandenberghe
  • Anders Hansson
چکیده

In this work, different relaxations applicable to an MPC problem with binary control signals are compared. The relaxations considered are the QP relaxation, the standard SDP relaxation and an equality constrained SDP relaxation. The relaxations are related theoretically and both the tightness of the bounds and the computational complexities are compared in numerical experiments. The result is that the standard SDP relaxation is the one that usually gives the best bound and is most computationally demanding, while the QP relaxation is the one that gives the worst bound and is least computationally demanding. The equality constrained relaxation presented in this paper often gives a better bound than the QP relaxation and is much less computationally demanding compared to the standard SDP relaxation. Furthermore, for a special case, it is shown that the equality constrained SDP relaxation can be cast in the form of a QP. This makes it possible to replace the ordinary QP relaxation usually used in branch and bound for these problems with a tighter SDP relaxation. Numerical experiments indicate that this relaxation can decrease the overall computational time spent in branch and bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power injection of renewable energy sources using modified model predictive control

This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...

متن کامل

Position Control Improvement of Permanent Magnet Motor Using Model Predictive Control

Fast and accurate transient response is the main requirement in electric machine position control. Conventional cascade control structure has sluggish response due to the limitation of inner control loop bandwidth. In this paper, in order to decrease the Permanent Magnet Synchronous Motor (PMSM) transient response time it can be used reference model using feed-forward signals. In this structure...

متن کامل

Power injection of renewable energy sources using modified model predictive control

This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...

متن کامل

Convex relaxations for mixed integer predictive control

The main objective in this work is to compare different convex relaxations for Model Predictive Control (MPC) problems with mixed real valued and binary valued control signals. In the problem description considered, the objective function is quadratic, the dynamics are linear, and the inequality constraints on states and control signals are all linear. The relaxations are related theoretically ...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007